Don’t Teach from Definitions! Just Don’t.

frustrated student

I settled down to watch a TV programme about schools, “Living with the Brainy Bunch”. It’s not something I would normally do having worked in schools for 13 years, a bit too much of a bus man’s holiday. The premise of this show was, however, intriguing. Two failing students were going to spend time living with a top grade student and their family to see if this would improve their prospects. How very Pygmalion. I was genuinely interested to see what the outcome would be.

But then in the middle of the documentary I found myself shouting at the TV screen. A teacher in the background of one scene committed the cardinal sin of physics teaching. The title of the lesson and aim were up on the board and the first thing they did was say “this is Ohm’s Law” and wrote it down, V=IR. Noooooooooooooo!

 

What is Wrong with Definitions?

There is a wealth, a plentitude, an embarrassment of research which clearly shows that rote physics teaching achieves poorer results in the short, medium and long term compared with active learning. This article published in Nature in 2015 summarises developing thought on the subject.

The rote style of teaching is adopted by people rushed for time, overly reliant on the exam specification or who don’t know what good physics teaching looks like. It makes for lessons which are instantly forgettable and do nothing to develop the students’ understanding. And understanding not parrot-fashion learning is crucial. The bread and butter basics of physics teaching should be understanding and thinking skills.

Charles Tracy and Peter Main from the Institute of Physics wrote an article called “Defining physics”[1] and have suggested a rather long winded but none the less instructive way of thinking about what physics actually is. Peter Main outlines his definition of physics as

a way of thinking, a reductionist view of the world where phenomena can be understood in terms of a relatively small number of physical laws and limited only by the complexity of a system or phenomenon. [2]

He argues that defining physics by its content misses out the crucial ways of thinking that studying physics should develop (when done correctly). Why develop these ways of thinking? Because you can’t DO physics in any effective way at all without developing these ways of thinking. Tracy and Main include critical thinking, deep understanding, logical and experimental consistency, use and development of models, awareness of simplifications, the excising of prejudice in thought patterns and ability to go beyond “common sense” in their list of physics skills. None of these are being taught or practised when teaching is done by copying a definition in words and symbols and then applying it to examples.

Teaching from definitions is teaching content only, and in the most dry and uninteresting way. You remove all thinking for the students and present a fait accompli. Effectively you are conveying this message “some other smart people came up with this, I’m not going to tell you how, just shut up and learn it OK?”. You do this and you are a disgrace to the profession.

Telling a student an answer, e.g. plug it in V=IR, and you enable them to solve a single set of simple problems. Explain to them how and why V=IR came about and they have an understanding that will enable them to solve many problems. Allow them to discover the relationship for themselves and work out how to use it and you’re a bloody genius. This is what we should all be doing in our classrooms.

 

Teaching from Definitions and the Impact on Girls

Teaching from definitions is stated by female students as one of the things which turns them off physics. This was an interesting outcome from the research “Girls in the Physics Classroom”[3].  From that publication note this particular quote:

Physics makes greater use of precise technical language and symbolic representation than the other science disciplines – probably than all other school subjects apart from mathematics. Most physics teachers are steeped in the use of, and sometimes the abuse of, this type of language. For example, it is not uncommon to hear “V = IR” used to denote Ohm’s law. For many pupils – boys and girls – this use of language and symbols is mystifying and it reinforces the impression that the subject does not connect with their world. Teachers who “talk equations” at an early stage in physics education risk alienating many students – girls in particular – from the subject.

The author goes on to say how pupils at KS4 begin to heavily link maths to physics but not because they are frequently using maths in analysing data or solving problems. No they get used to being presented with equations out of a useful context.

“It’s all about remembering equations. I can work out the resistance of a wire but I don’t know what it means.”

 

Girls especially found that this was a problem because they felt unable to “ask questions about a word or equation” and so felt that their understanding was stalled. Teachers who only introduced equations once the underlying concepts were well established were able to keep girls’ interest for longer.

It is important to understand that the reluctance of girls to engage with technical shorthand language is not a result of their reduced understanding. Indeed the author stresses that when questioned by the researchers the girls had an equal understanding to their male peers. Historically girls outperform boys in GCSE science including physics. In 2016-2017 169,455 girls achieved A*-C in maths and science GCSE compared to 163,256 boys [4].

The difficulty appears to be cultural. Boys are cultured to use technical language and be rewarded with peer status and the approval of older authority figures when they do. Think about how boys discuss football stats or the specifications of their mobile phones, cars, computers. They spend years developing a confidence with numerical shorthand and technical language in competitive communications with their peers. Girls are socialised to use more expressive and empathetic language. I can’t tell you how weirdly you are treated as a young woman if you try having a conversation about the amount of memory, processing speed and other specifications of a tablet, laptop or phone. Bafflement not at the content of the conversation but at my motivations, awkward silences and “what is wrong with you?” are all responses I have had when trying to talk geek to other girls.

When a teacher uses technical language and algebraic shorthand in a physics class they are unwittingly displaying a bias in favour of one gender. The use of a snappy V=IR shorthand feels instantly familiar to boys. Girls aren’t familiar with this way of speaking and seem uncomfortable with using it, holding back their replies. Then a boy shoves up his hand or calls out and gives a terse one word reply, the teacher accepts it and the lesson moves on. But you have lost the interest of the girls. Overtime this communication bias leads them to give up on answering questions in class. They feel less able to access the lesson and join in the teacher-pupil conversation.

The advice from the report was as follows:

Teachers, both male and female, in the most successful schools made more sparing use of technical language, used terminology in context and avoided algebraic shorthand. They used everyday language wherever possible and, where terminology was needed, it was carefully defined and pupils’ understanding was checked…

 

…The guiding principle was to establish ideas and concepts before the use of terminology or equations.

Once understanding is established the teachers introduced the terminology and rigorously policed its correct use. No sloppy reference to “electricity” when “current” is the word required.

It can’t be overstated how much the use of language effects students studying science. Too much technical jargon and it feels more like a foreign language lesson than something relevant to real life. As one girl in the report says:

“If physics is relevant then we ought to be able to talk about it using normal language. I used not to ask questions because I didn’t know how to put them – I didn’t have the right words. [Teacher X] doesn’t mind this and encourages us to have a go. If we use the wrong words [Teacher X] doesn’t correct us or make us feel embarrassed.”

We need to make our lessons as inclusive and easy to comprehend as possible. That doesn’t mean leaving out technical scientific terms. It does mean developing the understanding first through direct experience of the phenomena and its applications then slowly building in the correct language and algebraic shorthand once this is established.

 

The Importance of Discussion, Analogy and Relevance

Before students can develop a facility with technical language they need to have a handle on the topic. This means discussions about the uses and phenomena associated with the topic. How discussion is done in a classroom can vary. Little or no discussion takes place in rote lessons. The teacher asking a closed question “what is ….” and getting a terse response is not discussion.

To aid context and understanding students need time to explore what they know about a topic amongst themselves. Small group discussions work well when combined with the requirement to produce a group response or an answer on a small white board. Questions like “What is it about electricity that makes it so useful to us?”; “What happens when we turn a light switch off?”; “Why do we have to have a system of pylons and cables around the country?”; and “Why can’t we store electricity?” are so much more useful than “what is the definition of current?” [3].

This discussions and group responses can all occur using ordinary language. Then the teacher can lead the whole group in the development of these ideas. “Why can’t we store electricity?” is bound to lead to a discussion of the role of a battery in a circuit. From this charge separation, electric fields and the transfer of energy through the movement of charges in a wire can all be demonstrated and explained.

Mental images of what is going on are very useful, particularly in some topics. Electricity is notoriously lacking in direct visual input, and so requires a suitable analogy. All students benefit from this but teachers need to be careful they don’t use out of date or again biased examples. As one female student says “I’m not interested in how Beckham bends a ball or what the acceleration of a Ferrari is – why should I be?”. An even better approach is to see if students can devise their own analogies. All of this aids understanding and model building before any equation needs to be introduced.

I would leave equations until after the students have done an experiment or seen a demonstration where the relationship of interest is clearly shown. It is so much easier to infer and remember a result from data you have collected yourself. Set up a simple circuit with a resistor. Take some readings, plot a graph, draw a gradient. Then introduce Ohm’s Law.

Lastly, understanding is aided when physics is contextualised. It is a mistake to assume all students want modern, real world examples when asking for relevance. What is relevant can vary from person to person. It is enough to say that a topic is relevant because it helps explain X, Y or Z. Or maybe it connects with some wider moral or philosophical issues (origin of the Universe), some ethical argument (use of nuclear power), even a conspiracy theorist’s misunderstandings (climate change). They may well want to hear about applications of this topic in their daily lives but they also like to know about applications beyond their limited experiences. Sometimes it is relevant because it is the pathway to a desired career goal, relevant in a pragmatic way. If you wish to study architecture, physics can be relevant even if not everything is about the construction of buildings.

 

The Death of Definitions

I started out by saying teaching from definitions is a method used by rushed teachers, those reliant on the specification and those who don’t understand how best to teach.

What if you are rushed for time? The curriculum demands increase year on year and sometimes cramming triple science GCSE into a double science timetable requires corners to be cut. So cut the definitions. Teach circuits with circuits even if you have to demonstrate rather than do a class practical. Get students to take the readings with you, volunteers can write the data up on the class board. They can still work out the relationships you need individually and they will learn as they do.

People are often told “don’t teach to the specification” I think this doesn’t go far enough. Some people actually teach the specification. There is nothing wrong with using this document to guide your lessons but you don’t get students to work through 3-4 points from the spec each lesson. It is a check list to ensure you cover each point, not an instruction manual. Teaching from specification or textbooks indicates lack of confidence.

The best remedy to lack of confidence in physics teaching is to find out how to teach the subject from an expert. Buy a good book, enrole on a CPD course or get support from physics specialists in your school or online, for example TalkPhysics.

Or you could keep reading the articles on here, The Physics Teacher.

 

References

[1] Main, P. C. and Tracy, C. M. (2013) “Defining physics.” Physics World, 26(4), 17–18

[2] Main, P.C. “Thinking Like a Physicist: Design Criteria for a Physics Curriculum”  Schools Science Review March 2014, 95(352)

[3] “Girls in the Physics Classroom” 2006,

[4] https://www.gov.uk/government/statistics/revised-gcse-and-equivalent-results-in-england-2016-to-2017 viewed 14/7/2018

Phases of the Moon for Young Children

Recently I went in to my daughter’s primary school and spent the afternoon running an activity for the 60 children aged 6-7 in her year group. They had been studying the Solar System and I’m happy to offer my services as an expert of all things astrophysics. I ended up delivering a lesson which introduced the key science skills of observation, spotting patterns and making a prediction as part of the topic of the phases of the moon.

Misconceptions and Remedies

There are many common misconceptions regarding the Moon which children arrive with at secondary school. It never ceases to surprise me how many 11 year olds don’t think the Moon is ever visible by day, despite the fact that they have all seen it! This is easily fixed with a few reminders of times they have seen the Moon outside, often it is actually in the sky during the lesson, or photos can be shown with the moon in daylight.

They have no grasp of the relative sizes, distances or position of the Moon with respect to the Earth. I have often spent a lesson with tennis balls and plasticine blobs getting the students to make scale models with the Moon 30 times the Earth’s diameter away. I always discuss how the photos we commonly see of the Earth-Moon as a pair are doctored to bring the Moon much closer – this really does need explaining to students.

Typical Earth-Moon image:

Actual Earth Moon separation:

Students without fail believe the Moon orbits the Earth’s equator. In fact the Earth is tilted by 23 degrees to the ecliptic and the Moon is a further 5 degrees above that. Reminding students of the Earth’s own tilt is often enough to get them to realise the Moon must alternate its position above and below the equator. They also benefit from discussion about the locations where solar eclipses occur to further realise the Moon can’t stay over the midline of the Earth. This nicely introduces the idea of the ecliptic plane of the Solar System and the various orbital tilts that planets have. The idea of planetary alignment and paranormal events is quite common in science fiction and fantasy shows on TV, conjunctions are never perfectly aligned however and you can explain why.

So there are some significant gaps in the children’s understanding of our Earthly relationship to our nearest neighbour in space. In an attempt to get the children thinking about what they could see of our Moon with their own eyes, I planned a Phases of the Moon lesson.

Lesson Plan – Outline

AIM: to introduce the names for the phases of the Moon and to recognise the shapes associated with the names. To observe the shape of Moon over the course of a week and predict what it would look like the following week. More able students will be able to offer an explanation in terms of the shadow face/illuminated face of the moon and our position with respect to those two hemispheres.

TIMING: 45 minutes

5 minutes: Elicitation and questions

20 minutes: Copy and name the moon phases, practise naming the phases

10 minutes: Observe the “moon” in pairs

10 minutes: Discuss conclusions and explain observation task

LOCATION: A room large enough for 30 children to sit and with space to walk around the illuminated ball (see below). Curtains or blinds will be needed to darken the room.

APPARATUS: One large inflatable gym ball, roughly 60cm in diameter, with a stool to sit it on; a bright torch positioned to shine straight onto the ball from the side; some A4 pictures of the Moon printed from NASA’s website and therefor publicly useable (all NASA pictures are usable for educational purposes). A worksheet and pencil each.

ORGANISATION/BEHAVIOUR MANAGEMENT: The children need to sit and write on their sheets for part of the lesson. They sat on the floor or a bench in 3 rows. Ideally I would give them clip boards to use next time. When pairs of children are observing the ball the remainder of the class needs to be kept busy. During this time one teacher practised the shapes and names with them again which worked well.

Lesson Plan – Activity Details

ACTIVITIES:

  1. Elicitation and questions: Firstly students are seated facing the front and asked what they know about the Moon. Do they know what it is made from? How can we see it? Does it always look the same? Why do you think that? How do people on Earth find out about the Moon?
  2. Introduce vocabulary: Following this the students are given a pencil and worksheet, the teacher holds up a picture of the Moon and asks for the name for its shape (full moon, gibbous moon, half moon, crescent moon, new moon). Some students will know some of the names. They copy the word down and sketch a picture of the moon in that phase. Repeat until all 5 are done.
  3. Memorise shapes: The students put down their pencils and worksheets and try to make the moon phase shapes with their arms or bodies (depending on how much space you have). The teacher leads by saying a phase and the children have to find a way to make themselves resemble the shape.
  4. Observe the shadow face/illuminated face: in pairs, the students come and look for the dividing line between the bright face and the shadow face of the gym ball “moon”. They look from the front, side and behind and link the shape of the bright surface that they can see to the shape of the Moon at different times of the month.
  5. Observation experiment: The rear side of the worksheet has a chart where the children can write the day or the week, whether they could see the moon (due to cloud cover), was it visible at day or night and what shape it had. They go away and complete this during the week – realistically in children aged 6-7 most will do 3 or 4 observations out of a possible 7.
  6. Make a prediction: The final task on the worksheet is to make a prediction about what shape the Moon will have in a few days time. The students are using the pattern they have seen in their observations and linking it to the order of the phases introduced in the class activity.

 

FOLLOW UP: It was left to the class teacher to follow up this activity throughout the week with reminders and a discussion on their results the following week. The vocabulary of the phases of the moon can be easily incorporated into their continued work on the Solar System topic; in written work describing a trip to the moon, in art work, as part of maths learning about shape (sphere, hemisphere, crescent etc) and fractions (whole, half, quarter).

Evaluation

So how do I think it went? I have never taught science to such a young group of children before and on the whole they were interested and well behaved.

The worksheet seems to be pitched at the right level, most students could read it and understood what to do however some students needed to be shown where to draw the picture and where to write the word. Some students took a little longer to write than others and there was discussion about how best to show shadow and a New Moon which was interesting, eventually they solved these issues for themselves.

The A4 pictures of the moon phases were large enough to be seen be everyone as I sat in front of the group.

They enjoyed standing up and making moon shapes with their arms over their heads, a big circle for a full moon, D shape for half moon, banana shape for a crescent and so on. If I had thought this through a bit more I could have taken them to the centre of the hall (we were in the main school hall) and made a bit more of this.

Some children really wanted to touch the ball and trace the line between the shadow and bright side, so if I repeated the lesson I would take some plasticine or a coil of rope for the ball to sit in so it didn’t wobble around so much on the stool.

The one thing I felt needed improving was the time when I showed the illuminated big ball to the pairs of students. Those waiting in their seats were not occupied enough. Partly this was due to were I had had to position the ball, the sun was very bright through the windows that afternoon and the corner of the hall was the only suitable dark enough spot even with the curtains pulled. That meant far fewer students than I had anticipated could walk around the ball at a time, I had planned for 8-10 students to walk and view both sides, front and back at the same time. One class teacher stepped in and led the group in practicing the shapes and tested them on the words while their classmates took turns to look at the ball. The other teacher didn’t and the students eventually became restless.

I would prepare a word search or pairing/matching game for this period of the lesson if I did it again to reinforce the vocabulary while they waited.

With one group we had a good discussion about how scientists find things out which led nicely onto the homework observation task. We ran out of time with the other group which meant the task was explained with less context. This bothered me but the students didn’t seem to mind. The students very much enjoyed asking questions about how scientists work, one asked me if scientists have rows with each other about who is right, which of course they do very politely via academic publications.

Additional Resources

moonphasepictures – Word document of A4 lack and white Moon phase photos

Phases of the Moon – students’ worksheet